All Categories : Articles and Success Stories Bookmark and Share

Title : Innovative shock wave control through SLM from LayerWise
Company : LayerWise
File Name : aero_jet_engine_small.jpg
Size : 302148
Type : image/jpeg
Date : 09-Jul-2011
Rating :
Downloads : 5

Rate This File
5 Stars
4 Stars
3 Stars
2 Stars
1 Star

Additive Manufacturing enables innovative shock wave control in supersonic turbine blades LayerWise’ single-piece turbine blade model used in pioneering research at von Karman Institute Scientists at von Karman Institute in Belgium contracted LayerWise for producing a scaled turbine inlet guide vane model for a turbine research project. Additive manufacturing specialist LayerWise built the metal vane specimen as a single part, complete with internal cooling cavity and fine instrumentation channels. Research based on detailed simulation and testing concludes that turbine cooling could be improved by ejecting a pulsating stream through the trailing edge, instead of a continuous stream. At the same time, the pulsed cooling significantly reduces the intensity of the shock waves. This opens up opportunities for jet engine and power plant turbine manufacturers to achieve higher turbine expansions, resulting in more compact engines and reduced development costs. Pulsated versus continuous cooling Turbine blades in jet engines and power plants are internally cooled because of their exposition to high-temperature gas flow, directly discharged from the combustion chamber. Shock waves formed at the trailing vane edge generate strong stator/rotor interactions that reduce turbine efficiency and add additional mechanical challenges. The current research at the von Karman Institute focuses on pulsated cooling versus continuous cooling. Scientists selected and characterized the different building blocks needed to acquire detailed insight into this new concept of pulsated turbine cooling. Building blocks for fluid dynamics research A mechanical pulsating valve delivering an adequate margin of frequencies and amplitudes generate the pulsating cooling air. The air flow travels through a model of a high-pressure inlet guide vane produced by LayerWise, circulating all along its length before being ejected through a slot at the trailing edge. It concerns a simplified and scaled turbine inlet guide vane model that is derived from a real geometry. Professor Paniagua and his team studied numerically the entire setup using fluid dynamics simulation software. The complete experimental setup was modelled, including piping, pulsating valve and blade cavity. The fluid dynamics model was used to extend the experimental investigation beyond the limits of the current setup, mainly in the upper frequency provided by the valve. Subsequently, experiments were carried out to verify the numerical results. Turbine inlet guide vane produced by LayerWise Building the physical model of the turbine inlet guide vane was a real challenge. LayerWise, a company focusing on selective laser melting (SLM), produced the vane according to von Karman Institute specifications. Quite impressive is that LayerWise manufactured the vane as one unit in a single production step, including all internal cooling cavities and instrumentation channels. Wind tunnel test results, including both time averaged and time resolved results, helped the aerodynamicists to understand and prove the complex physics involved. According to Paniagua, the relationship between pulsated cooling and shock wave behavior is also quite revolutionary. Computed fluid dynamics simulation predicts a 70% reduction in shock intensity, with experimental data conforming the heavy reduction tendency. “The conclusion of this successful research project is that shock waves can be adequately controlled by optimizing the cooling pulsation timing and amplitude. This offers great potential for aero engine and power plant turbine manufacturers to develop more compact engines exhibiting higher reliability and thrust/weight ratio.”
User Reviews More Reviews Review This File
Featured Video
Editorial
Jobs
Business Development Manager for Berntsen International, Inc. at Madison, Wisconsin
Senior Principal Software Engineer for Autodesk at San Francisco, California
Principal Engineer for Autodesk at San Francisco, California
Machine Learning Engineer 3D Geometry/ Multi-Modal for Autodesk at San Francisco, California
Upcoming Events
Consumer Electronics Show 2025 - CES 2025 at Las Vegas NV - Jan 7 - 10, 2025
Collaborate North America 2025 at Novi MI - Jan 28, 2025
Celebrate Manufacturing Excellence at Anaheim Convention Center Anaheim CA - Feb 4 - 6, 2025
3DEXPERIENCE World 2025 at George R. Brown Convention Center Houston TX - Feb 23 - 26, 2025



© 2024 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering EDACafe - Electronic Design Automation GISCafe - Geographical Information Services TechJobsCafe - Technical Jobs and Resumes ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise