Richard Childress Racing Puts CNC Machining On Fast Track With NC Simulation

Affordable NCSIMUL cuts hours from first piece production

January 8, 2013 - Richard Childress Racing (RCR), one of the predominant names in NASCAR Sprint CUP racing, knows a little bit about the value of getting on track and up to speed quickly. It is part of the organization’s culture. So when its machine shop, where custom parts are manufactured for RCR race cars, was losing four to eight hours of machine cycle on critical “first piece” parts, it was a detriment to that culture of speed.

Rick Grimes, Manufacturing Manager for RCR, said, "We have to turn parts quickly in this business. We are a week-to-week operation. Our shop is frequently asked to program a part from scratch and get it out to the machine, then get the parts made and out to the track before the next race. Naturally, we are eager to do whatever it takes to reduce the time between creating the model and having the completed first piece in our hands."

Giant Step
First piece manufacturing took a giant step forward at RCR in 2010 when its CAD software reseller, 3HTI, suggested that they take a look at a new simulation software package called NCSIMUL, developed by Spring Technologies, a French company that had just established a North American subsidiary organization headquartered in Cambridge, Massachusetts. NCSIMUL is an affordable yet comprehensive software solution for simulating, verifying, optimizing, and reviewing CNC machining programs. It can be used in conjunction with CAD/CAM software. In the case of RCR, it was PTC Pro/Engineer.

Lost Time Recaptured
Kiziah said that performing a complete simulation with NCSIMUL takes about 15 minutes. Before the company installed NCSIMUL, many hours of machining time were lost while painstakingly slogging through the code. This lost time has now been recaptured.

In the past, without NCSIMUL, RCR would have had to blindly proof the program out on the machine. If some surfaces didn’t clean up, the operator and machine would have had to wait around until the programmer re-worked the program. This would in turn waste several hours of machine time.  Without NCSIMUL, the original Rev. A 1st piece part took 8 hours to proof out.  This time around, with the power of NCSIMUL, the Rev. B 1st piece part was proofed in only 4 hours.

Get the complete article on: www.springplm.com

Philippe Solignac
SPRING Technologies HQ
Corporate Marketing Director
Tel: + 33 (0)1 43 60 25 00
Mail : Email Contact



Read the complete story ...
Featured Video
Editorial
Jobs
Mechanical Engineer 3 for Lam Research at Fremont, California
Mechanical Engineer 2 for Lam Research at Fremont, California
Manufacturing Test Engineer for Google at Prague, Czechia, Czech Republic
Mechanical Test Engineer, Platforms Infrastructure for Google at Mountain View, California
Senior Principal Mechanical Engineer for General Dynamics Mission Systems at Canonsburg, Pennsylvania
Equipment Engineer, Raxium for Google at Fremont, California
Upcoming Events
Celebrate Manufacturing Excellence at Anaheim Convention Center Anaheim CA - Feb 4 - 6, 2025
3DEXPERIENCE World 2025 at George R. Brown Convention Center Houston TX - Feb 23 - 26, 2025
TIMTOS 2025 at Nangang Exhibition Center Hall 1 & 2 (TaiNEX 1 & 2) TWTC Hall Taipei Taiwan - Mar 3 - 8, 2025
Additive Manufacturing Forum 2025 at Estrel Convention Cente Berlin Germany - Mar 17 - 18, 2025



© 2024 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering EDACafe - Electronic Design Automation GISCafe - Geographical Information Services TechJobsCafe - Technical Jobs and Resumes ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise