Optima Design Automation Announces the “Optima Safety Platform” To Drive Order-of-Magnitude Safety Fault Analysis Performance Improvements

NAZARETH, Israel, Oct. 29, 2019 (GLOBE NEWSWIRE) -- Optima Design Automation today rolled out its next-generation Optima Safety Platform, (OSP), based on its Fault Injection Engine (FIE™) technology. OSP includes Optima’s first two automated solutions: Optima-HE™ and Optima-SE™ for hard-error and soft-error analysis, respectively. By increasing fault analysis performance by orders of magnitude over the next fastest solution, Optima offers its customers a reduction in analysis time from months to days, as well as automated coverage improvement and design safety.

OSP has been shown in private benchmarks to increase fault analysis performance more than two orders of magnitude over its nearest rival. To date, fault analysis of large automotive safety critical devices, as stipulated by the ISO 26262 standard, can require months of compute time to perform. By reducing this time to a matter of days or hours, new forms of analysis can be performed that dramatically improve device safety and quality while ensuring an accurate measure of fault resistance. The addition of Optima’s automated CoverageMaximizer™ technology allows for design areas not analyzed during verification to be easily eliminated, further improving the analysis process.

“Up to now, automotive ISO 26262 fault analysis has made use of traditional, slow fault simulation technology designed for a different purposes, using 30-year-old algorithms and methods,” noted Jamil Mazzawi, Optima’s Founder and Chief Executive Officer. “We have taken an entirely new approach to this problem, building the fault-simulation algorithms from the ground up to realize dramatic improvements in this time-consuming process. This has opened the potential for new analysis solutions that allow previously unavailable operations to be performed that maximize functional safety coverage and ultimate device quality.”

Optima Fault Injection Engine Technology
The only tool available for safety fault analysis has been traditional fault simulation, a 30-year-old technique that was designed to target semiconductor manufacturing testing. Optima’s engineering team has developed a new, proprietary set of fault analysis algorithms that specifically targets safety analysis fault injection.

By leveraging modern parallel simulation and formal verification technologies, avoiding issues caused by manufacturing fault simulation requirements, and taking a new slant on fault optimization methods such as fault list pruning and collapsing, the FIE provides revolutionary analysis performance. One private benchmark of the FIE versus the broadly considered fastest rival fault simulator on a commercial design showed the FIE executing more than 1000X faster.

Optima has used the FIE technology as a basis on which to build specialized solutions for different fault scenarios

Optima-HE and Optima-SE Automated Analysis Solutions
The Optima Safety Platform includes a broad range of fault analysis solutions for different applications and industries. Its two initial solutions that target ISO 26262 automotive safety fault analysis provide streamlined solutions for hard errors, or permanent faults, and soft errors, or transient faults.

Optima-HE uses the FIE to perform exhaustive fault analysis for stuck-at-1 and stuck-at-0 hard-errors. Based on the ISO 26262 standard categorization, the solution identifies dangerous faults in a design that are not trapped by a safety mechanism and could cause a significant failure that might lead to personal injury. It analyzes large design code bases extremely rapidly, reducing a process that used to require months down to a few days or less. This enables development teams to predict an accurate metric for fault coverage that makes an ASIL-D rating for their devices possible. Furthermore, Optima-HE includes CoverageMaximizer technology that identifies areas of the device not adequately tested and provides guidance for the engineers to cover these hard-to-find gaps in the process.

Optima-SE also uses the FIE to perform soft-error analysis on transient faults. Transient faults are notoriously hard to identify due to their temporary nature. A technique of “flip-flop hardening” for critical areas of the design may be used to eliminate transient fault effects. However, hardening every flip-flop in a design is extremely expensive in terms of silicon area and power consumption. By iteratively applying fault analysis it is possible to identify a subset of the design flips-flops, which if hardened will ensure a high degree of transient fault resistance while minimizing additional flip-flop circuitry. However, this valuable process requires many fault analysis runs making it prohibitive for most device development programs. Leveraging the high performance of the FIE, Optima-SE makes this process possible in a reasonable amount of time, thereby dramatically increasing device quality. Running on a customer design of a commercially available CPU, Optima-SE has been shown to run over 10,000 times faster than regular RTL simulation.

Pricing and Availability
The Optima Safety Platform, including Optima-HE and Optima-SE, both based on the FIE, are available today. The company will release CoverageMaximizer in March 2020. Pricing is available on request.

About Optima Design Automation
Optima Design Automation is the pioneer of next-generation fault analysis for automotive functional safety verification. The company’s product portfolio of automated solutions targets specific fault conditions, accelerating fault simulation stipulated in the ISO 26262 standard by orders of magnitude and enabling a dramatic increase in analysis coverage and ultimate device quality. Optima partners with leading automotive semiconductor vendors and EDA tool providers to create complete solutions that shorten safety critical device time-to-market. Co-funded by the European Union, the company is privately held and is based in Nazareth, Israel. For more information, visit Optima-DA.com.

FIE, Optima-HE, Optima-SE and CoverageMaximizer are trademarks of Optima Design Automation. Optima Design Automation acknowledges trademarks or registered trademarks of other organizations for their respective products.

For more information, contact:
Annette Bley
Annette Bley PR for Optima Design Automation
+44 (0) 7973 801132
annette@annettebleypr.com 

Primary Logo

Featured Video
Editorial
Latest Blog Posts
Sanjay GangalMCADCafe Guest Blog
by Sanjay Gangal
Industry Predictions for 2025: COMSOL
Sanjay GangalMCADCafe Editorial
by Sanjay Gangal
MCADCafe Industry Predictions for 2025 – ProShop
Jobs
Mechanical Engineer 2 for Lam Research at Fremont, California
Mechanical Engineer 3 for Lam Research at Fremont, California
Senior Principal Mechanical Engineer for General Dynamics Mission Systems at Canonsburg, Pennsylvania
Mechanical Test Engineer, Platforms Infrastructure for Google at Mountain View, California
Mechanical Manufacturing Engineering Manager for Google at Sunnyvale, California
Equipment Engineer, Raxium for Google at Fremont, California
Upcoming Events
Collaborate North America 2025 at Novi MI - Jan 28, 2025
Celebrate Manufacturing Excellence at Anaheim Convention Center Anaheim CA - Feb 4 - 6, 2025
3DEXPERIENCE World 2025 at George R. Brown Convention Center Houston TX - Feb 23 - 26, 2025
TIMTOS 2025 at Nangang Exhibition Center Hall 1 & 2 (TaiNEX 1 & 2) TWTC Hall Taipei Taiwan - Mar 3 - 8, 2025



© 2025 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering EDACafe - Electronic Design Automation GISCafe - Geographical Information Services TechJobsCafe - Technical Jobs and Resumes ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise