Empower Semiconductor Expands Silicon Capacitor Portfolio with Breakthroughs in Density and Performance

SAN JOSE, Calif., July 12, 2022 — (PRNewswire) —

Latest Empower E-CAP™ technologies represent industry's highest performance, smallest size, and most configurable capacitor technology platform

SAN JOSE, Calif., July 12, 2022 /PRNewswire-PRWeb/ -- Empower Semiconductor, the world leader in Integrated Voltage Regulators (IVR), has announced that it has expanded its E-CAP™ family of silicon capacitors with new technologies that offer further breakthroughs in density and performance.

Integrating multiple discrete capacitances into a single solid-state device, E-CAP is the world's thinnest, most compact and most flexible capacitor solution. The technology brings together a capacitor density that is over five times that of leading multilayer ceramic capacitors (MLCCs) with improved equivalent series inductance (ESL) and equivalent series resistance (ESR) characteristics that dramatically reduce parasitic.

Designed using the most advanced trench capacitor technology, the latest E-CAP solutions offer densities of 1.1µF/mm2, which is over twice the density of alternative silicon capacitor technologies. In addition to the density, thickness levels can be achieved below 50µm in overall height. Multiple, matched capacitance values from 75pF to 5µF (@2V) can be integrated into a single die to create custom integrated capacitor arrays, while form factors can be customized for the space and height limitations of a particular application. Packaging options based on bumps, pads and pillars allow designers to choose the best solution based on specific system constraints.

"E-CAP provides a superior high-frequency de-coupling solution with a much smaller footprint and component count than traditional MLCC-based solutions," says Steve Shultis, Empower's SVP of Sales and Marketing. "Our technology provides new options for demanding applications in IoT, wearables, mobile, and processors where size, performance, and flexibility are essential. The latest improvements in density and performance make E-CAP ideal for next-generation, data-intensive systems that demand high-frequency operation and maximum efficiency from the smallest possible form factors."

Using E-CAP, designers can combine all non-bulk, high-frequency decoupling capacitors into a single die to dramatically reduce component count, BoM cost and potential points of failure. Although the E-CAPs have lower nominal capacitance, their superior frequency response and ESL over MLCCs results in lower impedance at high frequencies. And unlike MLCCs where multiple devices are needed to account for de-rating from voltage, temperature and age, E-CAP requires no AC or DC bias de-rating while all other de-rating requirements are negligible. This eliminates the need to 'over specify' capacitance requirements to account for de-rating

About Empower Semiconductor
The exponential increase in the amount of data being communicated and processed around the globe is driving the energy consumption of data centers and communications networks to 17% of total electricity demand worldwide by 2030(1), dramatically increasing pollution, carbon emissions and cost. Empower Semiconductor was founded with the mission to "minimize the energy footprint of the digital economy" by developing novel fully integrated power management solutions that both increase the performance and reduce the power consumption of energy-hungry, data-intensive applications.

Traditional power solutions require dozens of discrete components with big footprints, complex designs and deliver power inefficiently with poor response times and inaccuracies. Empower Semiconductor's patented IVR technology integrates dozens of components into a single IC increasing efficiency, shrinking footprints by 10x and delivering power with unprecedented simplicity, speed & accuracy and with zero discrete components. The Empower IVR™ technology solves the power density challenge to address a wide range of applications including mobile, wearables, 5G, AI, and data centers. In 2020 the capacitor technology platform was added to further address power density. E-CAP revolutionized the capacitor industry as the world's smallest, highest performing, and incredibly reliable capacitor for wearables, mobile, and SoC applications. The company is based in Silicon Valley, CA and is led by a team of highly experienced power experts and executives.

Empower Semiconductor and the Empower logo are trademarks or registered trademarks of Empower Semiconductor, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners.

Media Contact

Emma Jenkins, Grand Bridges, 44 07828609969, Email Contact

 

SOURCE Empower Semiconductor

Contact:
Company Name: Empower Semiconductor

Featured Video
Editorial
Jobs
Mechanical Manufacturing Engineering Manager for Google at Sunnyvale, California
Senior Principal Mechanical Engineer for General Dynamics Mission Systems at Canonsburg, Pennsylvania
Equipment Engineer, Raxium for Google at Fremont, California
Manufacturing Test Engineer for Google at Prague, Czechia, Czech Republic
Mechanical Engineer 2 for Lam Research at Fremont, California
Mechanical Test Engineer, Platforms Infrastructure for Google at Mountain View, California
Upcoming Events
Celebrate Manufacturing Excellence at Anaheim Convention Center Anaheim CA - Feb 4 - 6, 2025
3DEXPERIENCE World 2025 at George R. Brown Convention Center Houston TX - Feb 23 - 26, 2025
TIMTOS 2025 at Nangang Exhibition Center Hall 1 & 2 (TaiNEX 1 & 2) TWTC Hall Taipei Taiwan - Mar 3 - 8, 2025
Automate 2025 at Detroit, Michigan, USA MI - May 12 - 15, 2025



© 2024 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering EDACafe - Electronic Design Automation GISCafe - Geographical Information Services TechJobsCafe - Technical Jobs and Resumes ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise