“Vision applications will be a defining feature and differentiator for products in a wide range of markets including mobile, smart home, automotive, retail analytics, public safety and more. Imagination’s IP cores including PowerVR GPUs and video processors, Raptor imaging processors and MIPS CPUs are already used in vision applications, and we expect this trend to accelerate,” said Peter McGuinness, director of Multimedia Technology Marketing, Imagination. “We are delighted to be involved with defining the specification for OpenVX 1.0, which we believe is a valuable starting point for accelerating creation and adoption of vision applications.”
“Intel supports and welcomes the adoption of OpenVX as an important element in proliferating computer vision usage models,” said Ofri Wechsler, Intel Fellow. “In fact, Intel has a long history in supporting the development of the computer vision domain spanning the creation of OpenCV more than two decades ago to the active optimization of OpenCV 3.0 for Intel CPUs and Intel Processor Graphics.”
“OpenVX enables disrupting computer vision applications that run on low-power mobile and wearable devices,” said Victor Erukhimov, CEO of Itseez, Inc., and chair of the OpenVX working group. “We see it as an optimization layer for many of our projects, from sophisticated middleware for smartphones to advanced driver assistance technologies and mobile 3D scanning.”
“We are excited to contribute to the next generation of computer vision applications,” says A.G.K. Karunakaran, CEO of MulticoreWare. “Our experts are already working with leading device OEMs and semiconductor companies on the development of OpenVX platforms and computer vision libraries that leverage multicore heterogeneous processors including CPUs, GPUs, DSPs, VSPs, and other programmable architectures.”
“Real-time vision processing combined with advanced graphics is inter-twining the real and virtual worlds to enable true visual computing applications,” said Neil Trevett, president of the Khronos Group and vice president of mobile ecosystem at NVIDIA. “NVIDIA is integrating OpenVX into our VisionWorks SDK so GPU-accelerated vision nodes can be easily combined into pipelines for a range of advanced vision applications.”
"Renesas is pleased to take part in the launch of OpenVX that is expected to have a significant impact on the vision application domain," said Masayuki Mizuno, vice president, chief of Incubation Center at Renesas Electronics Corporation. "We believe OpenVX will break new ground in vision applications by introducing graph-based optimization as well as by defining standard vision APIs.”
“Samsung is committed to bringing novel, useful, and fun computer vision applications to our mobile devices. The standard framework of OpenVX lets us develop portable applications for diverse application processors and consumer devices, from tablets and handsets to wearables,” said Mike Polley, senior vice president and head of the Samsung Mobile Processor Innovation Lab. “Samsung encourages the industry to support OpenVX to enable broad availability of computer vision on mobile platforms, allowing Samsung and independent software developers to unlock the potential of our advanced processing architectures and deploy pervasive, revolutionary and efficient computer vision in power-constrained environments.”
“Texas Instruments is committed to enabling advanced vision analytics processing and to support customers to streamline their embedded development,” said Jason Jacob, processor general manager - ADAS, Texas Instruments. “As a member and contributor of the Khronos OpenVX working group and efforts, TI believes the release of the OpenVX specification is a key milestone in enabling Open Standards based embedded compute frameworks to drive a faster adoption rate in the market. Our digital signal processors (DSPs) provide the performance lift and power efficiency for vision analytics and TI will be enabling OpenVX on these architectures.”
“videantis congratulates the OpenVX team on reaching another major milestone,” said Hans-Joachim Stolberg, CEO at videantis. “We see OpenVX as a key open standard that enables efficient acceleration of computer vision algorithms, driving new applications such as automotive driver assistance systems, always-on camera applications, gesture interfaces, 3D capture, and augmented reality. We’re proud to bring support for this new standard to our v-MP4000HDX scalable unified video/vision processor architecture.”
“Vivante is working with leading industry partners to deliver high performance, real time, intelligent vision processing solutions in mobile, automotive and smart security products through our OpenVX based GC7000 VX Series GPUs,” said Wei-Jin Dai, CEO and President of Vivante. “This innovative design enables SoC vendors to use the same processing core for embedded vision acceleration and photorealistic 3D rendering, while keeping power consumption within mobile levels. Through a dynamic VLIW vision instruction set and enhanced shader extensions to achieve single cycle API efficiency, this new GPU Vision approach will allow rapid adoption of vision applications on Vivante OpenVX platforms.”
About The Khronos Group
The Khronos Group is an industry consortium creating open standards to
enable the authoring and acceleration of parallel computing, graphics,
vision, sensor processing and dynamic media on a wide variety of
platforms and devices. Khronos standards include OpenGL®,
OpenGL® ES, WebGL™, OpenCL™, SPIR™, SYCL™, WebCL™, OpenVX™,
OpenMAX™, OpenVG™, OpenSL ES™, StreamInput™, COLLADA™ and glTF™. All
Khronos members are enabled to contribute to the development of Khronos
specifications, are empowered to vote at various stages before public
deployment, and are able to accelerate the delivery of their
cutting-edge media platforms and applications through early access to
specification drafts and conformance tests. More information is
available at
www.khronos.org .