“The research being done at the Feinstein Institute is exciting and promising,” noted Jenny Lawton, CEO of MakerBot. “We are continually amazed by what is being created with 3D Printers. To know that a MakerBot Replicator 3D Printer played a role in a potential medical breakthrough is inspiring.”
The results of the study, as presented by Mr. Goldstein and Dr. Zeltsman at The Society of Thoracic Surgeons, illustrate how the 3D printed windpipe or trachea segments held up for four weeks in an incubator. According to Mr. Goldstein’s abstract, “The cells survived the 3D printing process, were able to continue dividing, and produced the extracellular matrix expected of tracheal chondrocytes.” In other words, they were growing just like windpipe cartilage.
The Feinstein Institute describes this work as a “proof of concept.” The team still has work to do before establishing a new protocol for repairing damaged windpipes. Medical research can take years to move from bench to bedside, as can US Food and Drug Administration (FDA) approval. However, if there is no approved treatment for an ailment, the FDA has a compassionate therapy exception that allows the patient to agree to try an experimental approach.
According to Dr. Smith, at least one patient comes through the North Shore-LIJ Health System each year who can’t be helped by the two traditional methods, and he expects in the next five years to harvest a patient’s cells, grow them on a scaffolding, and repair a windpipe. This customized approach may prove to be especially useful for treating children, says Dr. Smith. “There's really a limitless number of sizes and permutations you might need to reconstruct an airway in a child.”
When speaking about his work with 3D printing and this research, Mr. Goldstein notes, “It's completely changed the trajectory of my academic career.” Mr. Goldstein originally came to the Feinstein Institute as a molecular biologist, working with cells, chemicals and drugs. Combining this knowledge with 3D printing and getting into tissue engineering is something he didn't expect that at all when he joined the Feinstein Institute.
Now he is the Feinstein Institute’s 3D printing specialist, printing models of organs for pre-operative planning and tools to improve the lab. He is the presenting author on a paper being presented to thousands of surgeons, and applying for major grants to continue his research. “Knowing that I can make a part that will save someone's child — that's life-changing,” said Mr. Goldstein.
“This project will probably define my scientific career,” says Dr. Smith. “As we produce something that can replace a segment of trachea, we'll constantly be modifying and optimizing, the correct bio materials, the correct way to bond the cells to the scaffold. 3D printing and tissue engineering has the potential to replace lots of different parts of the human body. The potential for creating replacement parts is almost limitless.”
MakerBot has also supplied the Feinstein Institute with early samples of its just-announced MakerBot PLA Composite Filaments in Limestone (calcium carbonate) and Iron, which will be available commercially later this year, so the Feinstein Institute can start investigating how to engineer other kinds of tissue, like bone or 3D print custom-made shields for cancer and radiation treatment.
“Do you remember the Six Million Dollar Man?” asks Dr. Grande. “The Bionic Man is not the future, it’s the present. We have that ability to do that now. It’s really exciting.”
About MakerBot
MakerBot, a subsidiary of Stratasys Ltd. (Nasdaq: SSYS), is leading the Next Industrial Revolution by setting the standards in reliable and affordable desktop 3D printing. Founded in 2009, MakerBot has built the largest installed base of desktop 3D printers sold to innovative and industry-leading customers worldwide, including engineers, architects, designers, educators and consumers. To learn more about MakerBot, visit makerbot.com. To learn more about Thingiverse, visit thingiverse.com.
About the Feinstein Institute for Medical Research
Headquartered in Manhasset, New York, The Feinstein Institute for Medical Research is home to international scientific leaders in many areas including Parkinson’s disease, Alzheimer’s disease, psychiatric disorders, rheumatoid arthritis, lupus, sepsis, human genetics, pulmonary hypertension, leukemia, neuroimmunology, and medicinal chemistry. The Feinstein Institute, part of the North Shore-LIJ Health System, ranks in the top 6th percentile of all National Institutes of Health grants awarded to research centers. For more information, visit FeinsteinInstitute.org.
For questions pertaining to The Society for Thoracic Surgeons, please contact Cassie McNulty cmcnulty@sts.org | 312-202-5864
NOTE TO MEDIA: Video footage on Dr. Goldstein’s 3D printed tracheas is available at https://vimeo.com/117844256.
Photos/Multimedia Gallery Available: http://www.businesswire.com/multimedia/home/20150127005248/en/
Contact:
MakerBot
Jenifer Howard
Email Contact
+1-347-676-3932
(o)
+1-203-273-4246 (m)
or
The Feinstein Institute
Emily
Ng
Email Contact
+1-516-562-2670