NASA also awarded future cargo resupply contracts to ensure the critical science, research and technology demonstrations that are informing the agency's Journey to Mars are delivered to the International Space Station from 2019 through 2024
Journey to Mars
Astronaut candidates who will join future deep space missions will arrive at NASA in the summer of 2017 to begin their training. Their selection follows the agency's largest astronaut recruitment ever, in which more than 18,300 people applied to join NASA's astronaut class. That's more than double the previous record.
NASA's Journey to Mars is moving forward with plans to send new robotic explorers to the Red Planet, while ticking off key milestones for the first flight of the Space Launch System (SLS) rocket and Orion spacecraft into the proving ground of deep space, set to launch in late 2018 from an upgraded 21st century spaceport at NASA's Kennedy Space Center in Florida.
Workers at NASA's Michoud Assembly Facility have completed welding on the fuel tank for the SLS core stage, while we've successfully tested both the solid rocket booster and the RS-25 engines which will power the rocket's journeys to space. The Orion spacecraft has been put through its paces, with multiple splashdown tests, parachute tests, and a recovery test in the Pacific Ocean. In September, the heat shield which will protect Orion on that 2018 test flight arrived at Kennedy.
In March, the agency wrapped up a comprehensive and successful review of modernization at the Kennedy Space Center. Workers upgraded a variety of systems on the launch pad and erected new platforms in the famed Vehicle Assembly Building this year in order to prepare SLS and Orion for flight.
The first flight of SLS also will launch 13 CubeSats, small satellite secondary payloads which will carry science and technology investigations to help pave the way for future human exploration of deep space. NASA currently is seeking ideas for additional payloads for the second flight and partnership opportunities for the future Asteroid Redirect Mission. These efforts build on NASA's success demonstrating the demand and use of such small satellites deployed via the space station and other launches for commercial, educational, technology, and science activities.
In August, NASA selected six companies to develop ground prototypes and new concepts for the deep space habitats that will be needed on long-duration journeys where humans will live and work for months or years at a time without cargo deliveries from Earth.
Also in August, NASA approved the Asteroid Redirect Mission to proceed to the next phase of design and development for its robotic segment. NASA's Jet Propulsion Laboratory in Pasadena, California, sought proposals for the robotic spacecraft design, and plans to award a contract for its development in 2017.
The next two robotic missions to Mars passed key milestones in 2016, with the InSight lander getting the green light for a 2018 launch, and the Mars 2020 rover approved for the final design and construction phase.
In July, NASA selected five companies to study concepts for a potential future Mars orbiter, which would provide telecommunications and global high-resolution imaging.
In November, researchers using data from the Mars Reconnaissance Orbiter (MRO) determined an ice deposit beneath the cracked and pitted plains of the planet's Utopia Planitia region contains about as much water as that in Lake Superior, the largest of the Great Lakes. MRO also is using its hi-res camera to examine potential landing sites for future robotic and human missions. Meanwhile, Mars scientists continue to investigate the seasonal dark streaks known as recurring slope lineae, looking for what they can tell us about the presence of water on the Red Planet.
The Curiosity rover found chemicals in Martian rocks that suggest the Red Planet once had more oxygen in its atmosphere than it does now. Curiosity also made the first in-place study of active sand dunes on another planet and found a distinctive ripple pattern not seen on Earth. The rover continued to send back amazing imagery, including a close-up view of an odd looking iron meteorite and stunning photos of the Murray Buttes, which evoke the National Parks of the American West. Curiosity can now choose its own rock targets for its laser spectrometer, a first for an instrument of this kind on a planetary mission.
Both Curiosity and the Opportunity rover, which has been operating since 2004, successfully tested a radio relay in November, using NASA-provided radios on the newly-arrived European Trace Gas Orbiter to send a signal to Earth, strengthening the international telecommunications network supporting Mars exploration.
Aeronautics
NASA's rich aeronautical research heritage added to its history of technical innovation in 2016 with advancements that will help make airplanes use less fuel, release fewer emissions and fly more quietly – and that includes working to return supersonic flight to the commercial marketplace. A preliminary design for a supersonic flight demonstrator called QueSST – short for Quiet Supersonic Technology – began in 2016 with the goal of showcasing new ways to shape an aircraft so that when it's flying faster than the speed of sound it won't generate an annoying sonic boom.
On a related note, having established a long-range research plan that's in line with the aviation industry, NASA took steps in 2016 to resume designing, building and flying several experimental aircraft – or X-planes – as a means to demonstrate key green technologies and help accelerate their use by industry. It's all part of New Aviation Horizons, a 10-year initiative included in President Obama's budget request for the 2017 fiscal year that began Oct. 1.
The first NASA X-plane to receive an official number designation in a decade was unveiled this year. The X-57 Maxwell is a general aviation-sized aircraft equipped with 14 propellers, each turned by their own electric motor that is integrated into a uniquely-designed wing. The X-57 is scheduled for its first flight in March 2018.
NASA's aeronautical innovators joined government and industry partners to unveil a new research laboratory at Charlotte Douglas International Airport. The airspace technology demonstration (ATD-2) lab is part of a five-year test project aimed at streamlining the arrival and departure of aircraft and improving surface operations to increase safety and efficiency, and reduce fuel use in our nation's aviation system.
Inroads were made on technologies that could be part of a system to safely operate Unmanned Aircraft Systems (UAS), commonly called "drones," in uncontrolled and controlled airspace. A complex flight campaign using NASA's Ikhana UAS, along with virtual and real "intruder" aircraft, took place this summer to test sophisticated "detect and avoid" technologies in regulated national airspace.
April saw the first and largest demonstration of its kind when NASA engineers and operators from the Federal Aviation Administration's (FAA's) six UAS test sites across the country flew 22 drones simultaneously to assess rural operations of NASA's
UAS traffic management (UTM) research platform.